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Ideas related to Liapunov’s second method and developed by Chetaev [e. g. see [l and 31) 
are used to obtain an instability criterion somewhat different from the well-known crite- 
ria of Liapunov and Chetaev. 

1. 1 n t r o d u c t 1 on , Let us consider the stability of the equilibrium position of a 

system of ordinary differential equations 

dz / at = X(x, t), X(0, t) = 0 (1.1) 

We assume that the 72 -dimensional vector function X(x, t) is ccntinuous in t and has 

continuous partial derivatives with respect to P . 

The criterion which we shall formulate is valid for systems of any order m; in order 
to illustrate the basic ideas geometrically, we shall first sonsider a simple example of a 

third-order system. 

Let us assume that for $ > 0 (here and below g, ‘I, 5 represent the components of 

the vector I) we have the inequalities 

$>6(5) >(I, if lnax(l?l, 151)<& (1.2) 

(1.3) 

$- ( / 5 I- kg) > 0 for I 5 I == kc, I q I < kE (1.4) 
Let us consider the pyramid OA”B’CcD ’ (see Fig. 1) defined by the inequality max 

(I’ll, 151) G kE and intersected by 

the plane A BCD(g = E) in the imme- 
diate neighborhood of the origin. Con- 

ditions (1.2)-( 1.4) imply that the ua- 
jectories enter the truncated pyramid 

T, intersecting its surface at points 
belonging to the portion S,, consisting 
of the faces A BCD, BB’C’C and 
D D”A ‘A ; similarly, the trajectories 
emerge from the pyramid through points 
of the portion S, of its surface consist- 
ing of the faces BB’A’A , DD’C’C 

and A”B’C”D”. As we see from condition (1.2). the representing point can lie inside 
?’ for a finite time only ; this implies that the family of trajectories entering the pyra- 
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mid T at the instant t, effects continuous mapping of the part St of its surface onto the 
part S,; each point of’the closed broken line ABB’C”C DD”A*A is mapped into itself. 

Let us consider the mapping of the curve EFG. The corresponding curve EF”G must 
be a continuous line lying entirely on the surface 8, and connecting the points J%’ and 

G. It must therefore contain points belonging to the face A’B”C”U’. This fact implies 
instability, since the face ABCD can be placed arbitrarily close ‘to the origin, and since 

there are always trajectories (such as FF’) along which the representing point will reach 

the face A”B’PD* in a finite time. 

2. Formulation and anrly#!# of the problem. The criterion stated 
below generalizes the above basic idea. We hope that this generalization is not so recon- 

dite as to hinder its practical use (although it is possible that there may be another more 

convenient formulation). 
Let us consider the set of points x belonging to a prescribed (small but finite) neigh- 

borhood Q of the origin. We assume that there exist three single-valued functions 

U(z:, t>, V(X, t>, and I%‘&, t) such that for each sufficiently small e > 0 there exists 
a closed domain 52 e and a set &Y E, t nonempty for t > ts and defined as follows: 

(QJ (J, t) E Q,, if lJ)/a and rnax(l/, W)<O 

6% t) :cE&, t, if 17 = F and max (V, W) < 0 

We assume that the function U is continuous in the domain a for t > t, and that it 
has an infinitely small upper bound ; all that we require of the functions Nv and W(which 

may also depend on E) is that they be continuous in some neighborhood of the domain 

Q e; the values of V(0, t) and kV(O,t), need not be known. We assume that the time 

derivatives II”, V” and IV” taken along the trajectories of Eqs.(l. 1) are piecewise- 

continuous in the indicated neighborhood of the domain Q,.Finally, we assume that the 

functions U, V, w in the domain a efor t > 61 have the following properties (fulfil- 
ment of either Conditions a or Conditions b is sufficient) : 

1. U’>d(&, t) >o, !6(8, t>dt>M>O W=const) 
to 

Here the constant Mis independent of E . 

2a.V’>OforV=O andW GO. (IfV++ 0 asV-+-0,thenwecan 
take a function VI = V + el, E~ > 0, in which case V,” > 0 for VI = 0. If the 
surface V = 0 is adjacent to the discontinuity surface V”, then it is possible to alter 
the function V in suitable fashion.) 

2b. V’>----rlVl as v -+ -0, and W,<O (7 = const) 

3a. IV’<T~IV] as W-,-O and V<O (r=const) 

3b. w < 0, as W = 0 and V < 0 

The conditions which follow are usually fulfilled in practical problems. Let us assume 
that there exists a continuous mapping y = f(z, t) of the domain Q e into n-dimension- 
al (n < m) Euclidean space such that 

4a. T/(X, t) <O, if (2, t) E Q,, y = f (5, t) = 0 

4b. w (2, t) <o, if (5, -t) E Q,, y = f(r. t) = 0 

5. There exists a closed connected subset R e,tG!7,,t homeomorphic to its mapping 
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Vet = f(R,,, t). Th e correspondence between the sets Re,l and QE,t is given by Eq. 

x = g,, t (Y) = g,, t (f (2, t)) 

6a. The set R, t can be chosen in such a way that if 2 E R,,t, then the limit equa- 

tion e +- 0 implies that ) 5 ( --f 0. 
6b. If XE SE tr 
7a. The equation 

then as E -+ 0 we have the limit equation ) 5 1 -+ 0. 
V(gE,t (Y), t) = U is fulfilled at the points of the boundary P,,, 

of the set Q, t. 
7b. The equation w@,,,(Y), t) = 0 is fulfilled at the points of the boundary P,,t 

of the set Q, L . 
8. The point y = 0 is an interior point of the domain QE,t. 
Under these conditions the origin becomes an unstable singular point (if the domain 

9 ,breaks down into several isolated domains, then fulfilment of the above conditions 

for one of these domains is sufficient). 

Let us prove instability given fulfilment of Condition a . Let the origin be stable at 
the initial instant t0 which we can assume to be equal to zero without loss of generality. 
There then exists a positive number E such that any trajectory beginning at the instant 
t = O atthepoint x,5 R e,~ remains in the domain Sz for an infinitely long time 

(Conditions 5 and 6a). On the other hand, the trajectory must leave the confinites of the 
domain S? ,after a finite time (Condition l), intersecting the boundary of this domain at 
a single point (Z,, 5,) where T/’ = 0 (Conditions 2a and 3a). This defines the mapping 
(Z,,, 5,) = h, &,,) of the domain R, o into the space (z,t); this mapping is conti- 
nuous by virtue of the continuity of the initial equations and of Condition 2a. 

Now let us determine the continuous mapping of the domain Q, ,,onto the Y-space 

Y = f(“o, %) = f (~&%)) = f(k,,(&,,(Y)) = F(y) 
By Condition 7a we have 

Y = F(Y) = Y, if Y fZ P,,s 

Simple topological considerations now indicate that the mapping F(Q,,,) covers all 

the interior points of the set Qe,,,, including the point Y = 0 (Condition 8). (The do- 
main of definition of the mapping F can be extended to the closed n-dimensional 

sphere 1 y 1 < R containing the domain Q e s; we achieve this by setting F(Y) = Y 

for the points Y @ Qe,o. The assumption that the inequality [F(Y) 1 < 6 is not ful- 
filled at any point y implies that the projection G(Y)= - RF(Y) / 1 F(y) 1 is con- 
tinuous and has no stationary points; this contradicts the Brauer theorem). Since, by 
Condition 4a, V@,&,.,(Y) ) ) < 0 for Y = 0, we have a contradiction of our 
assumption that the singular point is stable. The theorem is proved. 

The proof for Conditions b is similar to the above. Here we consider trajectories pas- 

sing through the domain Q2, k consisting of the points (z, t) for which e < u <k 
(e is arbitrarily small) and ‘rnax (V, W) f 0. We choose a parameter k (&I so 
small that the inclusion 52,. k c 52 is valid. 

Let us consider the motion of the representing point along the trajectory in the direc- 
tion of decreasing t. Since the function u can have an infinitely small upper ba.d, 

the inequality U(Z, t) > k implies that 1~. 1 > K(k) > 0. On the other hand (see 
Condition 6b), the inequality u(z, t) < E implies that 1 J; ( < 61(E), where 6, is arbit- 

rarily small. For given k, e and t, (e.g. for t, = 0) there always exists a T, 0 <‘TWO 

such that the sets S,,, and Se, ,, are joined by at least one trajectory. 
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The value of T is bounded above ; the upper bound is given by 
T 

s 
6 (e, T) dt < k -e 

0 

247 

the inequality 

In proving this it is convenient to assume that X(Z) t) = X&r, - t) for t < 0. 
Instability criteria similar to the Chetaev two-function theorem ( [3]. p. 225) are clear- 

ly derivable as special cases of the above criterion ; to obtain them we need merely set 

either the function W(Case a) or the function T/‘(Case b) equal to negative constants. 
On the other hand, the two-function theorem remains valid under other, less restrictive 

conditions. We can formulate the two following instability criteria : 
c. Let us assume that w = con& ( 0; instability then follows from Conditions 1, 

2b and 6b. 
In fact, under these conditions any trajectory which reaches the set s,,T for T/’ < 0 

enters the domain 9 ,only by way of the points of the set s e,r, r < T. 
By making T vary between zero and the indicated upper bound, we can ensure that 

r = 0. 
d. Let us assume that V = const < 0; instability then follows from Conditions 1, 

3a and 6d, the latter requires the existence of an x0(E) E s,, o such that w(Zs, 

0) < 0 and [x0(~) I-+-O along with e. 
Under these conditions any trajectory which enters the domain Q ,at the point (a~ o, 0) 

cannot leave this domain in any other way save through the boundary of the domain Q. 
The validity of Criteria a and d is not contingent on the function u having an infi- 

nitely small upper bound. All that is required is that this function be uniformly bounded 
in the domain Q and that it satisfy the Condition U(0, t) = 0. Furthermore, two-func- 

tion Criterion b (V = const < 0) is wholly contained within Criterion b ; the same 
cannot be said of Criteria a and c. The conditions of validity of Criterion c are fewer 
in number and less restrictive (especially as regards the behavior of I”) ; however, 

restrictions 6b on the set S,,t and the restrictions on the function U (the infinitely small 
upper bound) are stronger than the corresponding conditions of Criterion a (W = const( 

(0). 
The above formulation of the instability criterion is more constructive as regards the 

boundary restrictions and the restrictions on the function U” than is the classical theorem 

of Chetaev ( [S], p. 225) ; this fact can have practical significance. Thus, if we interpret 
the original theorem of Chetaev ( [3], p. 217) and his well-known single-function theo- 

rem as special cases of the two-function theorem ( [3], p. 224). then we must admit the 
possibility of the functions U’and Wiranishing at the boundary I+’ = 0. It is essential 
here that our Condition 1 be fulfilled (or that its fulfilment be possible upon suitable 
alteration of the definition of a function Wdependent on E). 

3. Example. Let us investigate the stability of the equilibrium position in the 
following simple problem [43. Let us take differential equations of the form 

x’--h s-s *g + XS (‘) (5) + Rs (I, t) (s = I,..., 6) (3.1) 

We assume that the following equations are fulfilled : 

)‘1=h3=h3=0,h4*=-h4=hS,X5=x~~,ha=hs* <o (3.2) 

The symbols Xs @) (I) represent homogeneous second-degree polynomials with con- 
stant coefficients ; the functions R, satisfy the inequalities 
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1 Rs(~, t)l < kIx13, k = con& < cr for t > 0 (3.3) 
The complex conjugate “critical” variables Q, 5s have been introduced to illustrate 

the special features associated with purely imaginary eigenvalues. There can be many 

pairs of such eigenvalues. If all these pairs are distinct, no additional difficulties arise. 
All terms except x1x4, .VSQ or zaz,, can be eliminated from the expression for X,@) ; 
we shall assume that this has already been done 141. 

Similarly, terms of the type qz,, zl.zs, 229 ,etc., can be eliminated from the expres- 
sions for X~(sfl XZ’~), X,(2). The “noncritical”‘ variable .zs has been introduced in order 

that our system mighthave an eigenvalue with a negative real part ; increasing the num- 
ber of such eigenvalues entails no difficulties, even if some of the eigenvalues are not 
distinct. All the terms in the expressions for XJzl, s = i,..:, 5 which contain 3% can 

be readily eliminated (e.g. see [4]) ; we shall assume that this has already been done. 
We begin the analysis of the prblem by determining the direction of the instabili~ 

radius for which p = 0 (lzrl); if such a radius does not exist, then we shall attempt to 
find that for which p = 0 (Iszl), x1 = o (p) , etc. 

Let us set 
y2 = x2 - axlr Y, = 53 - B%r Y4 = xg (s = 1, 4, 5, 6) (3.4) 

and choose the constants a and /3 in such a way as to exclude the terms containing 9X2 
from the expressions for ~2’ and y,‘.These consfarm can be determined by solving the 

two equations for a and 6; one of these constants occurs in the second power, the other 

in the third power. The system of equations can be readily solved by the graphic method. 
Computational difficulties arise in the case of more than three critical variables associ- 

ated with zero eigenvalues. 
Let us assume that there exists at least one pair of constants a, fi satisfying the above 

conditions. The initial equations then become 

yl’ = aylZ + pl fv, % ~)=~~~I~~)+(~~~~~ :;> (3.5) 

-& (y&yYj) = ZbYlY4Y5 + P4 (Yc 9, YB’ = hl3YB + P6 (Y* t) 

where the quantities a and b are real, and where the functions ~1, pz, p3, ~4, pa satisfy 

the inequalities 
1~11 < kziyi (Ivat + lyal + 1~41) + k21y13 (3.6) 

lpzf, Ipal < k, (1~21~ + l~sl’+ ly4~W41y/3 

1~41 B hy4y5 id”;” !;;I’“‘” I 1~41 

6G 7 ’ 2 

Let us assume that a =#= 0; we can also assume without loss of generality that a > 0. 
The matrix A (with the eigenvalues pz and p3) is transformable to normal Jordan form; 

here y, = Y_L* if p3 = ~2’ # ~2. (If a = 0, then instability can in some cases be estab- 

lished by investigating the terms.proportional to Y,? Analysis of the case a -+ 0, at 
least in the case of an autonomous system when the functions Rs in Eqs. (3.1) do not 
explicitly depend on t, is complicated by the existence of a singular point yr - a, ~1, 

Y3 - a2, y4, i~3, it+ s 0, which tends to the origin). 
If the above conditions are fulfilled, then the origin turns out to be an unstable singu- 

lar point of Eqs. (3.1) ( *). 

3 The reviewer of the present paper has noted that this example can generally be ana- 
lyzed by the method ofKamenkov 153. I believe, however. that the method described 
here is simpler. It also has the advantage of being free of the somewhat artificial 
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Let us prove this by applying the above criterion. 
We take a constant y subject to the inequality 

O<Y<l (3.7) 
(further restrictions on the choice of y will be noted below). 

Next we consider a small neighborhood of the origin and set 

LJ=yr, Z, = ySYJ * - ,-a”Y,*+3Y (s = 2, . . . , 6) (3.8) 

The positive constants cS can all be set equal to unity (except in Case III below: see 

Formula (3.23)). 
We denote the values of Z’,Q at the points where Z* = 0 by ZIS,s . We then define the 

domain LEE bY stipu1ating that (Q,) z E Q?, , e if u > e and maxB Z, < 0 

For the points of this domain we have (see (3.5), (3.6)) 

C“ = nyr? + 0 (yrs+y + y13) 

z*,; = Z&k = 2&C,‘yrs+sY + 0 (yrafsy + yr4+y) 

d, = d, = b - a (1 f y) 
Moreover, 

where by (3.2) 
zs,; = 2&&/r*+*y + 0 (Yrs+y) 

)“L? < 0 

To compute 2’2,0 and Z’,,, we consider the possible types of matrix A : 

I. The eigenvalues are distinct and complex-conjugate, 

A= lr2 
0 

( > 
Z 

0 p2* ' 

’ = z3;() = 2dpc22yr3f”Y + 0 (yrs+* + yr4t.r) 
2.0 

d2 = d, = Repa - a (1 e y) 

II. The eigenvalues are real and distinct. The matrix A is diagonal, 

A=: I: ( > 

z,;, = 2d&Yrs+*Y + 0 (Y13+3y + Y14+Y) 

S ’ Z# 3.1 = 3, I$ $//, 3e?Y + 0 (y13i3Y fy141Y) 

a2 = j.l2 - a (2 + y)$ d3 = Ps - = (1 + Y) 

III. The eigenvalues are real and distinct. The matrix A is nondiagonal. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3. 19) 

In this case dz is defined as in (3.18) ; the quantity d, is no longer constant, and depends 
on YZ and sgn y,. Setting 

we obtain 
a, = p”- - n (1 -t y) :f OC? / cs (3.21) 

Now let us choose the constant s in such a way that none of the quantities d, equals 

(cont. from opposite page) resnictions on the time dependence of the higher-order terms 
R (see (3.1)) involved in Kamenkov’s method (e.g. see [5], pp. 123-127). 
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zero- Specifically, we require that 

141 z n / 2P (3.22) 

in which p is the number of critical variables in the problem. In Case III we must also 

make the ratio c2 / c, sufficiently small, e. g, 

czlc,~<a/8 (3.23) 

It is convenient in practice to place y midway between zeru and unity. 

Let us break down the quantities Z, into two groups according to whether the functions 

Z’,, o are positive or negative. We set 

V = max, Z,, (Z,:, > 01, W==max,Zs (Z,,‘O<O) (3.24) 

If Z’,,, < 0 for all s, then instability follows immediately from the two-function 
theorem of Chetaev, Otherwise we must apply the above criterion, whose conditions are 

clearly fulfilled. (.The mapping into ~-.dlmensioual space is effected by projecting onto 
the half-space those ya for which z’~,~ > 0: it is sufficient to take the real and imagin- 

ary parts of each pair of complex-conjugate coordinates, The subset R,,t can be defined 
by setting gs = 0 for the s such that Z’,,, < 0). 

Even though the origin is unstable for most systems of this type (Eqs. (3.1) - (3,3)), 
it is easy to construct cases when the method does not apply and the problem of stability 
must be solved by considering third-order terms, For example, let us consider system 

$ f+ + @ + zsz) = f 2 ($4 + Z&4 + z$) (3.26) 

The upper sign in this equation corresponds to instability ; the lower sign corresponds 

to stability. 
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